Psychological Review, Vol 130(5), Oct 2023, 1239-1261; doi:10.1037/rev0000420
Most words have multiple meanings, but there are foundationally distinct accounts for this. Categorical theories posit that humans maintain discrete entries for distinct word meanings, as in a dictionary. Continuous ones eschew discrete sense representations, arguing that word meanings are best characterized as trajectories through a continuous state space. Both kinds of approach face empirical challenges. In response, we introduce two novel “hybrid” theories, which reconcile discrete sense representations with a continuous view of word meaning. We then report on two behavioral experiments, pairing them with an analytical approach relying on neural language models to test these competing accounts. The experimental results are best explained by one of the novel hybrid accounts, which posits both distinct sense representations and a continuous meaning space. This hybrid account accommodates both the dynamic, context-dependent nature of word meaning, as well as the behavioral evidence for category-like structure in human lexical knowledge. We further develop and quantify the predictive power of several computational implementations of this hybrid account. These results raise questions for future research on lexical ambiguity, such as why and when discrete sense representations might emerge in the first place. They also connect to more general questions about the role of discrete versus gradient representations in cognitive processes and suggest that at least in this case, the best explanation is one that integrates both factors: Word meaning is both categorical and continuous. (PsycInfo Database Record (c) 2023 APA, all rights reserved)