In this article, the authors demonstrate the utility of an extended latent Markov model for analyzing temporal configurations in the behaviors of a sample of 550 domestic violence batterers. Domestic violence research indicates that victims experience a constellation of abusive behaviors rather than a single type of violent outcome. There is also evidence that observed behaviors are highly dynamic, with batterers cycling back and forth between periods of no abuse and violent or controlling behavior. These issues pose methodological challenges for social scientists. The extended latent Markov method uses multiple indicators to characterize batterer behaviors and relates the trajectories of violent states to predictors of abuse at baseline. The authors discuss both methodological refinements of the latent Markov models and policy implications of the data analysis.