Abstract
This paper studies a general class of social choice problems in which agents’ payoff functions (or types) are privately observable random variables, and monetary transfers are not available. We consider cardinal social choice functions which may respond to agents’ preference intensities as well as preference rankings. We show that a social choice function is ex ante Pareto efficient and Bayesian incentive compatible if and only if it is dictatorial. The result holds for arbitrary numbers of agents and alternatives, and under a fairly weak assumption on the joint distribution of types, which allows for arbitrary correlations and asymmetries.