• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Hidden Reward: Affect and Its Prediction Errors as Windows Into Subjective Value

Current Directions in Psychological Science, Ahead of Print.
Scientists increasingly apply concepts from reinforcement learning to affect, but which concepts should apply? And what can their application reveal that we cannot know from directly observable states? An important reinforcement learning concept is the difference between reward expectations and outcomes. Such reward prediction errors have become foundational to research on adaptive behavior in humans, animals, and machines. Owing to historical focus on animal models and observable reward (e.g., food or money), however, relatively little attention has been paid to the fact that humans can additionally report correspondingly expected and experienced affect (e.g., feelings). Reflecting a broader “rise of affectivism,” attention has started to shift, revealing explanatory power of expected and experienced feelings—including prediction errors—above and beyond observable reward. We propose that applying concepts from reinforcement learning to affect holds promise for elucidating subjective value. Simultaneously, we urge scientists to test—rather than inherit—concepts that may not apply directly.

Read the full article ›

Posted in: Journal Article Abstracts on 03/13/2024 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice