Given the heterogeneity and possible disease progression in schizophrenia, identifying the neurobiological subtypes and progression patterns in each patient may lead to novel biomarkers. Here, we adopted data-driven machine-learning techniques to identify the progression patterns of brain morphological changes in schizophrenia and investigate the association with treatment resistance.
In this cross-sectional multicenter study, we included 177 patients with schizophrenia, characterized by treatment response or resistance, with 3D T1-weighted magnetic resonance imaging. Cortical thickness and subcortical volumes calculated by FreeSurfer were converted into z scores using 73 healthy controls data. The Subtype and Stage Inference (SuStaIn) algorithm was used for unsupervised machine-learning analysis.
SuStaIn identified 3 different subtypes: (1) subcortical volume reduction (SC) type (73 patients), in which volume reduction of subcortical structures occurs first and moderate cortical thinning follows, (2) globus pallidus hypertrophy and cortical thinning (GP-CX) type (42 patients), in which globus pallidus hypertrophy initially occurs followed by progressive cortical thinning, and (3) cortical thinning (pure CX) type (39 patients), in which thinning of the insular and lateral temporal lobe cortices primarily happens. The remaining 23 patients were assigned to baseline stage of progression (no change). SuStaIn also found 84 stages of progression, and treatment-resistant schizophrenia showed significantly more progressed stages than treatment-responsive cases (P = .001). The GP-CX type presented earlier stages than the pure CX type (P = .009).
The brain morphological progressions in schizophrenia can be classified into 3 subtypes, and treatment resistance was associated with more progressed stages, which may suggest a novel biomarker.