• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Facing the Unknown Unknowns of Data Analysis

Current Directions in Psychological Science, Ahead of Print.
Empirical claims are inevitably associated with uncertainty, and a major goal of data analysis is therefore to quantify that uncertainty. Recent work has revealed that most uncertainty may lie not in what is usually reported (e.g., p value, confidence interval, or Bayes factor) but in what is left unreported (e.g., how the experiment was designed, whether the conclusion is robust under plausible alternative analysis protocols, and how credible the authors believe their hypothesis to be). This suggests that the rigorous evaluation of an empirical claim involves an assessment of the entire empirical cycle and that scientific progress benefits from radical transparency in planning, data management, inference, and reporting. We summarize recent methodological developments in this area and conclude that the focus on a single statistical analysis is myopic. Sound statistical analysis is important, but social scientists may gain more insight by taking a broad view on uncertainty and by working to reduce the “unknown unknowns” that still plague reporting practice.

Read the full article ›

Posted in: Journal Article Abstracts on 06/03/2023 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice