Assessment, Ahead of Print.
Data aggregation in mental health is complicated by using different questionnaires, and little is known about the impact of item harmonization strategies on measurement precision. Therefore, we aimed to assess the impact of various item harmonization strategies for a target and proxy questionnaire using correlated and bifactor models. Data were obtained from the Brazilian High-Risk Study for Mental Conditions (BHRCS) and the Healthy Brain Network (HBN; N = 6,140, ages 5–22 years, 39.6% females). We tested six item-wise harmonization strategies and compared them based on several indices. The one-by-one (1:1) expert-based semantic item harmonization presented the best strategy as it was the only that resulted in scalar-invariant models for both samples and factor models. The between-questionnaires factor correlation, reliability, and factor score difference in using a proxy instead of a target measure improved little when all other harmonization strategies were compared with a completely at-random strategy. However, for bifactor models, between-questionnaire specific factor correlation increased from 0.05–0.19 (random item harmonization) to 0.43–0.60 (expert-based 1:1 semantic harmonization) in BHRCS and HBN samples, respectively. Therefore, item harmonization strategies are relevant for specific factors from bifactor models and had little impact on p-factors and first-order correlated factors when the child behavior checklist (CBCL) and strengths and difficulties questionnaire (SDQ) were harmonized.