• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

A model‐based approach to multivariate principal component regression: Selecting principal components and estimating standard errors for unstandardized regression coefficients

Abstract

Principal component regression (PCR) is a popular technique in data analysis and machine learning. However, the technique has two limitations. First, the principal components (PCs) with the largest variances may not be relevant to the outcome variables. Second, the lack of standard error estimates for the unstandardized regression coefficients makes it hard to interpret the results. To address these two limitations, we propose a model-based approach that includes two mean and covariance structure models defined for multivariate PCR. By estimating the defined models, we can obtain inferential information that will allow us to test the explanatory power of individual PCs and compute the standard error estimates for the unstandardized regression coefficients. A real example is used to illustrate our approach, and simulation studies under normality and nonnormality conditions are presented to validate the standard error estimates for the unstandardized regression coefficients. Finally, future research topics are discussed.

Read the full article ›

Posted in: Journal Article Abstracts on 03/30/2023 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice