Abstract
Affordable housing that incorporates sustainability goals into its design has the potential to address both health and economic disparities via enhanced energy-efficiency, structural durability and indoor environmental quality. Despite the potential for these win-win advances, survey data of U.S. local governments indicate these types of equity investments remain rare. This study explores barriers and pathways to distributional equity via energy-efficient housing. Using archival city sustainability survey data collected during a period of heightened U.S. federal investment in local government energy-efficiency programs, we combine machine learning (ML) and process-tracing approaches for modeling the complex drivers and barriers underlying these decisions. First, we ask, how do characteristics of a city’s organizational learning methods—its administrative structure, past experience with housing programs, resources, stakeholder engagement and planning—predict policy commitments to green affordable housing? Using ensemble ML methods, we find that three specific modes of organizational learning—past experience with affordable housing programs, seeking assistance from neighborhood groups and the technical expertise of professional green organizations—are the most impactful features in determining city commitments to constructing green affordable housing. Our second stage uses process-tracing within a specific case identified by the ML models to determine the ordering of these factors and to provide more nuance on green-housing policy implementation.
摘要
将可持续发展目标纳入其设计的经济适用房有可能通过提高能源效率、结构耐久性和室内环境质量来应对卫生差异和经济差异。尽管具备双赢的潜力, 但美国地方政府的调查数据表明, 这类公平投资仍然很少见。本研究探究了通过节能住房实现分配公平的障碍和途径。我们使用在“美国联邦政府加大对地方政府能效计划的投资”期间收集的城市可持续性调查档案数据, 将机器学习(ML)和过程追踪方法结合起来, 对这些决策背后的复杂驱动因素和障碍进行建模。第一, 我们研究了城市的组织学习方法的特征——其行政结构、住房项目经验、资源、利益攸关方的参与和规划——如何预测关于绿色经济适用房的政策承诺?使用集成机器学习法, 我们发现, 三种特定的组织学习模式——经济适用房项目经验、寻求社区团体协助、专业绿色组织的技术专长——是确定建设绿色经济适用房的城市承诺一事中最有影响力的特征。我们的第二阶段在ML模型识别的特定案例中使用过程追踪法, 以期确定这些因素的顺序, 并为绿色住房政策的实施提供更多细微差别。
Resumen
Las viviendas asequibles que incorporan objetivos de sostenibilidad en su diseño tienen el potencial de abordar las disparidades económicas y de salud a través de una mayor eficiencia energética, durabilidad estructural y calidad ambiental interior. A pesar del potencial de estos avances en los que todos ganan, los datos de las encuestas de los gobiernos locales de EE. UU. indican que este tipo de inversiones de capital sigue siendo poco frecuente. Este estudio explora las barreras y los caminos hacia la equidad distributiva a través de viviendas energéticamente eficientes. Usando datos de archivo de la encuesta de sostenibilidad de la ciudad recopilados durante un período de mayor inversión federal de EE. UU. en programas de eficiencia energética del gobierno local, combinamos el aprendizaje automático (ML) y los enfoques de seguimiento de procesos para modelar los complejos impulsores y barreras que subyacen a estas decisiones. Primero, preguntamos, ¿cómo las características de los métodos de aprendizaje organizacional de una ciudad (su estructura administrativa, experiencia pasada con programas de vivienda, recursos, participación y planificación de las partes interesadas) predicen los compromisos políticos con la vivienda ecológica asequible? Usando métodos de ML de conjunto, encontramos que tres modos específicos de aprendizaje organizacional (experiencia pasada con programas de vivienda asequible, búsqueda de ayuda de grupos de vecinos y la experiencia técnica de organizaciones ecológicas profesionales) son las características más impactantes para determinar los compromisos de la ciudad para construir viviendas ecológicas asequibles. Nuestra segunda etapa utiliza el seguimiento de procesos dentro de un caso específico identificado por los modelos ML para determinar el orden de estos factores y proporcionar más matices en la implementación de la política de viviendas ecológicas.