Abstract
A prevalent explanation for the self-reference effect is that self-knowledge is represented by a set of specific brain regions, including anterior cingulate cortex (ACC), middle frontal gyrus (MFG), superior temporal gyrus (STG), precuneus, and inferior parietal lobule (IPL), which enables self-knowledge to be processed in priority than other-knowledge. However, the conventional univariate activation analysis adopted by previous studies could only detect the activation of separate brain regions. The current study mainly investigated the global neural patterns of self-knowledge (relative to other-knowledge) by the multivariate pattern analysis (MVPA). Results obtained in Experiments 1 and 2 were highly consistent, indicating that the core self-network (mainly the ACC) and salience network (mainly the insula) could distinguish self-knowledge from other-knowledge. Furthermore, the neural pattern of positive self-knowledge mainly included the ventral part of ACC, while the neural pattern of negative self-knowledge mainly included the ventral and dorsal parts of ACC and cognitive control network (dorsolateral prefrontal cortex: dlPFC). These findings suggest that the core self-network and salience network are specific to the neural process of self-knowledge. Moreover, both positive and negative self-knowledge are separately driven by different cognitive and neural characteristics.