Background: At any given time, most smokers in a population are ambivalent with no motivation to quit. Motivational interviewing (MI) is an evidence-based technique that aims to elicit change in ambivalent smokers. MI practitioners are scarce and expensive, and smokers are difficult to reach. Smokers are potentially reachable through the web, and if an automated chatbot could emulate an MI conversation, it could form the basis of a low-cost and scalable intervention motivating smokers to quit. Objective: The primary goal of this study is to design, train, and test an automated MI-based chatbot capable of eliciting reflection in a conversation with cigarette smokers. This study describes the process of collecting training data to improve the chatbot’s ability to generate MI-oriented responses, particularly reflections and summary statements. The secondary goal of this study is to observe the effects on participants through voluntary feedback given after completing a conversation with the chatbot. Methods: An interdisciplinary collaboration between an MI expert and experts in computer engineering and natural language processing (NLP) co-designed the conversation and algorithms underlying the chatbot. A sample of 121 adult cigarette smokers in 11 successive groups were recruited from a web-based platform for a single-arm prospective iterative design study. The chatbot was designed to stimulate reflections on the pros and cons of smoking using MI’s running head start technique. Participants were also asked to confirm the chatbot’s classification of their free-form responses to measure the classification accuracy of the underlying NLP models. Each group provided responses that were used to train the chatbot for the next group. Results: A total of 6568 responses from 121 participants in 11 successive groups over 14 weeks were received. From these responses, we were able to isolate 21 unique reasons for and against smoking and the relative frequency of each. The gradual collection of responses as inputs and smoking reasons as labels over the 11 iterations improved the F1 score of the classification within the chatbot from 0.63 in the first group to 0.82 in the final group. The mean time spent by each participant interacting with the chatbot was 21.3 (SD 14.0) min (minimum 6.4 and maximum 89.2). We also found that 34.7% (42/121) of participants enjoyed the interaction with the chatbot, and 8.3% (10/121) of participants noted explicit smoking cessation benefits from the conversation in voluntary feedback that did not solicit this explicitly. Conclusions: Recruiting ambivalent smokers through the web is a viable method to train a chatbot to increase accuracy in reflection and summary statements, the building blocks of MI. A new set of 21 smoking reasons (both for and against) has been identified. Initial feedback from smokers on the experience shows promise toward using it in an intervention.
This is the abstract only. Read the full article on the JMIR site. JMIR is the leading open access journal for eHealth and healthcare in the Internet age.