• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Artificial Intelligence for COVID-19: Rapid Review

Background: COVID-19 was first discovered in December 2019 and has since evolved into a pandemic. Objective: To address this global health crisis, artificial intelligence (AI) has been deployed at various levels of the health care system. However, AI has both potential benefits and limitations. We therefore conducted a review of AI applications for COVID-19. Methods: We performed an extensive search of the PubMed and EMBASE databases for COVID-19–related English-language studies published between December 1, 2019, and March 31, 2020. We supplemented the database search with reference list checks. A thematic analysis and narrative review of AI applications for COVID-19 was conducted. Results: In total, 11 papers were included for review. AI was applied to COVID-19 in four areas: diagnosis, public health, clinical decision making, and therapeutics. We identified several limitations including insufficient data, omission of multimodal methods of AI-based assessment, delay in realization of benefits, poor internal/external validation, inability to be used by laypersons, inability to be used in resource-poor settings, presence of ethical pitfalls, and presence of legal barriers. AI could potentially be explored in four other areas: surveillance, combination with big data, operation of other core clinical services, and management of patients with COVID-19. Conclusions: In view of the continuing increase in the number of cases, and given that multiple waves of infections may occur, there is a need for effective methods to help control the COVID-19 pandemic. Despite its shortcomings, AI holds the potential to greatly augment existing human efforts, which may otherwise be overwhelmed by high patient numbers.

This is the abstract only. Read the full article on the JMIR site. JMIR is the leading open access journal for eHealth and healthcare in the Internet age.

Read the full article ›

Posted in: Open Access Journal Articles on 10/28/2020 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice