• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Associations between air pollution and outpatient visits for arrhythmia in Hangzhou, China

Abstract

Background

Arrhythmia is a common cardiovascular event that is associated with increased cardiovascular health risks. Previous studies that have explored the association between air pollution and arrhythmia have obtained inconsistent results, and the association between the two in China is unclear.


Methods

We collected daily data on air pollutants and meteorological factors from 1st January 2014 to 31st December 2016, along with daily outpatient visits for arrhythmia in Hangzhou, China. We used a quasi-Poisson regression along with a distributed lag nonlinear model to study the association between air pollution and arrhythmia morbidity.


Results

The results of the single-pollutant model showed that each increase of 10 μg/m3 of Fine particulate matter (PM2.5), Coarse particulate matter (PM10), Sulphur dioxide (SO2), Nitrogen dioxide (NO2), and Ozone (O3) resulted in increases of 0.6% (− 0.9, 2.2%), 0.7% (− 0.4, 1.7%), 11.9% (4.5, 19.9%), 6.7% (3.6, 9.9%), and − 0.9% (− 2.9, 1.2%), respectively, in outpatient visits for arrhythmia; each increase of 1 mg/m3 increase of carbon monoxide (CO) resulted in increase of 11.3% (− 5.9, 31.6%) in arrhythmia. The short-term effects of air pollution on arrhythmia lasted 3 days, and the most harmful effects were observed on the same day that the pollution occurred. Results of the subgroup analyses showed that SO2 and NO2 affected both men and women, but differences between the sexes were not statistically significant. The effect of SO2 on the middle-aged population was statistically significant. The effect of NO2 was significant in both the young and middle-aged population, and no significant difference was found between them. Significant effects of air pollution on arrhythmia were only detected in the cold season. The results of the two-pollutants model and the single-pollutant model were similar.


Conclusions

SO2 and NO2 may induce arrhythmia, and the harmful effects are primarily observed in the cold season. There is no evidence of PM2.5, PM10, CO and O3 increasing arrhythmia risk. Special attention should be given to sensitive populations during the high-risk period.

Read the full article ›

Posted in: Open Access Journal Articles on 10/08/2020 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice