The gut microbiota is a vast, complex, and fascinating ecosystem of microorganisms that resides in the human gastrointestinal tract. As an integral part of the microbiota–gut–brain axis, it is now being recognized that the microbiota is a modulator of brain and behavior, across species. Intriguingly, periods of change in the microbiota coincide with the development of other body systems and particularly the brain. We hypothesize that these times of parallel development are biologically relevant, corresponding to ‘sensitive periods’ or ‘critical windows’ in the development of the microbiota–gut–brain axis. Specifically, signals from the microbiota during these periods are hypothesized to be crucial for establishing appropriate communication along the axis throughout the life span. In other words, the microbiota is hypothesized to act like an expected input to calibrate the development of the microbiota–gut–brain axis. The absence or disruption of the microbiota during specific developmental windows would therefore be expected to have a disproportionate effect on specific functions or potentially for regulation of the system as a whole. Evidence for microbial modulation of neurocognitive development and neurodevelopmental risk is discussed in light of this hypothesis, finishing with a focus on the challenges that lay ahead for the future study of the microbiota–gut–brain axis during development.