Abstract
Background
Many studies have found that the hippocampus plays a very important role in major depressive disorder (MDD). The hippocampus can be divided into three subfields: the cornu ammonis (CA), dentate gyrus (DG) and subiculum. Each subfield of the hippocampus has a unique function and are differentially associated with the pathological mechanisms of MDD. However, no research exists to describe the resting state functional connectivity of each hippocampal subfield in MDD.
Methods
Fifty-five patients with MDD and 25 healthy controls (HCs) matched for gender, age and years of education were obtained. A seed-based method that imposed a template on the whole brain was used to assess the resting-state functional connectivity (rsFC) of each hippocampal subfield.
Results
Patients with MDD demonstrated increased connectivity in the left premotor cortex (PMC) and reduced connectivity in the right insula with the CA seed region. Increased connectivity was reported in the left orbitofrontal cortex (OFC) and left ventrolateral prefrontal cortex (vlPFC) with the DG seed region. The subiculum seed region revealed increased connectivity with the left premotor cortex (PMC), the right middle frontal gyrus (MFG), the left ventrolateral prefrontal cortex (vlPFC) and reduced connectivity with the right insula. ROC curves confirmed that the differences between groups were statistically significant.
Conclusion
The results suggest that the CA, DG and subiculum have significant involvement with MDD. Specifically, the abnormal functional connectivity of the CA may be related to bias of coding and integration of information in patients with MDD. The abnormal functional connectivity of the DG may be related to the impairment of working memory in patients with MDD, and the abnormal functional connectivity of the subiculum may be related to cognitive impairment and negative emotions in patients with MDD.