• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

The Invariance Paradox: Using Optimal Test Design to Minimize Bias

Abstract

Studies investigating invariance have often been limited to measurement or prediction invariance. Selection invariance, wherein the use of test scores for classification results in equivalent classification accuracy between groups, has received comparatively little attention in the psychometric literature. Previous research suggests that some form of selection bias (lack of selection invariance) will exist in most testing contexts, where classification decisions are made, even when meeting the conditions of measurement invariance. We define this conflict between measurement and selection invariance as the invariance paradox. Previous research has found test reliability to be an important factor in minimizing selection bias. This study demonstrates that the location of maximum test information may be a more important factor than overall test reliability in minimizing decision errors between groups.

Read the full article ›

Posted in: Journal Article Abstracts on 01/28/2020 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice