• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

A modified approach to fitting relative importance networks.

Psychological Methods, Vol 29(1), Feb 2024, 1-20; doi:10.1037/met0000496

Most researchers have estimated the edge weights for relative importance networks using a well-established measure of general dominance for multiple regression. This approach has several desirable properties including edge weights that represent R² contributions, in-degree centralities that correspond to R² for each item when using other items as predictors, and strong replicability. We endorse the continued use of relative importance networks and believe they have a valuable role in network psychometrics. However, to improve their utility, we introduce a modified approach that uses best-subsets regression as a preceding step to select an appropriate subset of predictors for each item. The benefits of this modification include: (a) computation time savings that can enable larger relative importance networks to be estimated, (b) a principled approach to edge selection that can significantly improve specificity, (c) the provision of a signed network if desired, (d) the potential use of the best-subsets regression approach for estimating Gaussian graphical models, and (e) possible generalization to best-subsets logistic regression for Ising models. We describe, evaluate, and demonstrate the proposed approach and discuss its strengths and limitations. (PsycInfo Database Record (c) 2024 APA, all rights reserved)

Read the full article ›

Posted in: Journal Article Abstracts on 04/24/2024 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice