• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Testing measurement invariance in a conditional likelihood framework by considering multiple covariates simultaneously

Abstract

This article addresses the problem of measurement invariance in psychometrics. In particular, its focus is on the invariance assumption of item parameters in a class of models known as Rasch models. It suggests a mixed-effects or random intercept model for binary data together with a conditional likelihood approach of both estimating and testing the effects of multiple covariates simultaneously. The procedure can also be viewed as a multivariate multiple regression analysis which can be applied in longitudinal designs to investigate effects of covariates over time or different experimental conditions. This work also derives four statistical tests based on asymptotic theory and a parameter-free test suitable in small sample size scenarios. Finally, it outlines generalizations for categorical data in more than two categories. All procedures are illustrated on real-data examples from behavioral research and on a hypothetical data example related to clinical research in a longitudinal design.

Read the full article ›

Posted in: Journal Article Abstracts on 02/15/2025 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice