Psychotherapy, Vol 62(3), Sep 2025, 292-300; doi:10.1037/pst0000519
Recent scholarship has highlighted the value of therapists adopting a multicultural orientation (MCO) within psychotherapy. A newly developed performance-based measure of MCO capacities exists (MCO–performance task [MCO-PT]) in which therapists respond to video-based vignettes of clients sharing culturally relevant information in therapy. The MCO-PT provides scores related to the three aspects of MCO: cultural humility (i.e., adoption of a nonsuperior and other-oriented stance toward clients), cultural opportunities (i.e., seizing or making moments in session to ask about clients’ cultural identities), and cultural comfort (i.e., therapists’ comfort in cultural conversations). Although a promising measure, the MCO-PT relies on labor-intensive human coding. The present study evaluated the ability to automate the scoring of the MCO-PT transcripts using modern machine learning and natural language processing methods. We included a sample of 100 participants (n = 613 MCO-PT responses). Results indicated that machine learning models were able to achieve near-human reliability on the average across all domains (Spearman’s ρ = .75, p p p p