• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Lessons from a Human-in-the-Loop Machine Learning Approach for Identifying Vacant, Abandoned, and Deteriorated Properties in Savannah, Georgia

Journal of Planning Education and Research, Ahead of Print.
Addressing strategies for managing vacant, abandoned, and deteriorated (VAD) properties is important for maintaining healthy communities. Yet, the process of identifying these properties can be difficult. Here, we create a human-in-the-loop machine learning (HITLML) model called VADecide and apply it to a parcel-level case study in Savannah, Georgia. The results show a higher prediction accuracy than was achieved when using a machine learning model without human input in the training. The HITLML approach also reveals differences between machine versus human-generated results. Our findings contribute to knowledge about the advantages and challenges of HITLML in urban planning.

Read the full article ›

Posted in: Journal Article Abstracts on 10/04/2024 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice