• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Multiple imputation of partially observed covariates in discrete-time survival analysis

Sociological Methods &Research, Ahead of Print.
Discrete-time survival analysis (DTSA) models are a popular way of modeling events in the social sciences. However, the analysis of discrete-time survival data is challenged by missing data in one or more covariates. Negative consequences of missing covariate data include efficiency losses and possible bias. A popular approach to circumventing these consequences is multiple imputation (MI). In MI, it is crucial to include outcome information in the imputation models. As there is little guidance on how to incorporate the observed outcome information into the imputation model of missing covariates in DTSA, we explore different existing approaches using fully conditional specification (FCS) MI and substantive-model compatible (SMC)-FCS MI. We extend SMC-FCS for DTSA and provide an implementation in the smcfcs R package. We compare the approaches using Monte Carlo simulations and demonstrate a good performance of the new approach compared to existing approaches.

Read the full article ›

Posted in: Journal Article Abstracts on 01/21/2023 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2023 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice