• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Accelerating Mixed Methods Research With Natural Language Processing of Big Text Data

Journal of Mixed Methods Research, Ahead of Print.
Situations of catastrophic social change, such as COVID-19, raise complex, interdisciplinary research questions that intersect health, education, economics, psychology, and social behavior and require mixed methods research. The pandemic has been a quickly evolving phenomenon, which pressures the time necessary to perform mixed methods research. Natural language processing (NLP) is a promising solution that leverages computational approaches to analyze textual data in “natural language.” The aim of this article is to introduce NLP as an innovative technology to assist with the rapid mixed methods analysis of textual big data in times of catastrophic change. The contribution of this article is illustrating how NLP is a type of mixed methods analysis and making recommendations for its use in mixed methods research.

Read the full article ›

Posted in: Journal Article Abstracts on 06/17/2021 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice