• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Comprehensive overview of common e-liquid ingredients and how they can be used to predict an e-liquids flavour category

Objectives

Flavours increase e-cigarette attractiveness and use and thereby exposure to potentially toxic ingredients. An overview of e-liquid ingredients is needed to select target ingredients for chemical analytical and toxicological research and for regulatory approaches aimed at reducing e-cigarette attractiveness. Using information from e-cigarette manufacturers, we aim to identify the flavouring ingredients most frequently added to e-liquids on the Dutch market. Additionally, we used flavouring compositions to automatically classify e-liquids into flavour categories, thereby generating an overview that can facilitate market surveillance.

Methods

We used a dataset containing 16 839 e-liquids that were manually classified into 16 flavour categories in our previous study. For the overall set and each flavour category, we identified flavourings present in more than 10% of the products and their median quantities. Next, quantitative and qualitative ingredient information was used to predict e-liquid flavour categories using a random forest algorithm.

Results

We identified 219 unique ingredients that were added to more than 100 e-liquids, of which 213 were flavourings. The mean number of flavourings per e-liquid was 10±15. The most frequently used flavourings were vanillin (present in 35% of all liquids), ethyl maltol (32%) and ethyl butyrate (28%). In addition, we identified 29 category-specific flavourings. Moreover, e-liquids’ flavour categories were predicted with an overall accuracy of 70%.

Conclusions

Information from manufacturers can be used to identify frequently used and category-specific flavourings. Qualitative and quantitative ingredient information can be used to successfully predict an e-liquid’s flavour category, serving as an example for regulators that have similar datasets available.

Read the full article ›

Posted in: Open Access Journal Articles on 03/26/2020 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice