Abstract
We present a novel set of 200 Western tonal musical stimuli (MUST) to be used in research on perception and appreciation of music. It consists of four subsets of 50 stimuli varying in balance, contour, symmetry, or complexity. All are 4 s long and designed to be musically appealing and experimentally controlled. We assessed them behaviorally and computationally. The behavioral assessment (Study 1) aimed to determine whether musically untrained participants could identify variations in each attribute. Forty-three participants rated the stimuli in each subset on the corresponding attribute. We found that inter-rater reliability was high and that the ratings mirrored the design features well. Participants’ ratings also served to create an abridged set of 24 stimuli per subset. The computational assessment (Study 2) required the development of a specific battery of computational measures describing the structural properties of each stimulus. We distilled nonredundant composite measures for each attribute and examined whether they predicted participants’ ratings. Our results show that the composite measures indeed predicted participants’ ratings. Moreover, the composite complexity measure predicted complexity ratings as well as existing models of musical complexity. We conclude that the four subsets are suitable for use in studies that require presenting participants with short musical motifs varying in balance, contour, symmetry, or complexity, and that the stimuli and the computational measures are valuable resources for research in music psychology, empirical aesthetics, music information retrieval, and musicology. The MUST set and MATLAB toolbox codifying the computational measures are freely available at osf.io/bfxz7.