Abstract
Although diminished proficiency on tasks that require visual-motor integration (VMI) has been reported in individuals with autism spectrum disorder (ASD), very few studies have examined the association between VMI performance and neuroanatomical regions of interest (ROI) involved in motor and perceptual functioning. To address these issues, the current study included an all-male sample of 41 ASD (ages 3–23 years) and 27 typically developing (TD) participants (ages 5–26 years) who completed the Beery-Buktenica Developmental Test of Visual-Motor Integration (Beery VMI) as part of a comprehensive neuropsychological battery. All participants underwent 3.0 T magnetic resonance imaging (MRI) with image quantification (FreeSurfer software v5.3). The groups were statistically matched on age, handedness, and intracranial volume (ICV). ASD participants performed significantly lower on VMI and IQ measures compared with the TD group. VMI performance was significantly correlated with FSIQ and PIQ in the TD group only. No pre-defined neuroanatomical ROIs were significantly different between groups. Significant correlations were observed in the TD group between VMI and total precentral gyrus gray matter volume (r = .51, p = .006) and total frontal lobe gray matter volume (r = .46, p = .017). There were no significant ROI correlations with Beery VMI performance in ASD participants. At the group level, despite ASD participants exhibiting reduced visuomotor abilities, no systematic relation with motor or sensory-perceptual ROIs was observed. In the TD group, results were consistent with the putative role of the precentral gyrus in motor control along with frontal involvement in planning, organization, and execution monitoring, all essential for VMI performance. Given that similar associations between VMI and ROIs were not observed in those with ASD, neurodevelopment in ASD group participants may not follow homogenous patterns making correlations in these brain regions unlikely to be observed.