• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Evaluating methods for handling missing ordinal data in structural equation modeling

Abstract

Missing ordinal data are common in studies using structural equation modeling (SEM). Although several methods for dealing with missing ordinal data have been available, these methods often have not been systematically evaluated in SEM. In this study, we used Monte Carlo simulation to evaluate and compare five existing methods, including one direct robust estimation method and four multiple imputation methods, to deal with missing ordinal data. On the basis of the simulation results, we provide practical guidance to researchers in terms of the best way to deal with missing ordinal data in SEM.

Read the full article ›

Posted in: Journal Article Abstracts on 01/25/2019 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice