• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Decision contamination in the wild: Sequential dependencies in online review ratings

Abstract

Current judgments are systematically biased by prior judgments. Such biases occur in ways that seem to reflect the cognitive system’s ability to adapt to statistical regularities within the environment. These cognitive sequential dependencies have primarily been evaluated in carefully controlled laboratory experiments. In this study, we used these well-known laboratory findings to guide our analysis of two datasets, consisting of over 2.2 million business review ratings from Yelp and 4.2 million movie and television review ratings from Amazon. We explored how within-reviewer ratings are influenced by previous ratings. Our findings suggest a contrast effect: Current ratings are systematically biased away from prior ratings, and the magnitude of this bias decays over several reviews. This work is couched within a broader program that aims to use well-established laboratory findings to guide our understanding of patterns in naturally occurring and large-scale behavioral data.

Read the full article ›

Posted in: Journal Article Abstracts on 01/02/2019 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice