• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Brain regional homogeneity and function connectivity in attenuated psychosis syndrome —based on a resting state fMRI study

Abstract

Background

By combining regional homogeneity (ReHo) and functional connectivity (FC) analyses, this study aimed to explore brain functional alterations in Attenuated Psychosis Syndrome (APS), which could provide complementary information for the neurophysiological indicators for schizophrenia (SZ) associated brain dysfunction.


Methods

Twenty-one APS subjects and twenty healthy controls were enrolled in the data acquisition of demographics and clinical characteristics as well as structural and resting-state functional magnetic resonance imaging (rs-fMRI). ReHo analysis was conducted to determine the peak coordinate of the abnormal regional brain activity. Then, identified brain regions were considered as seed regions and were used to calculate FC between reginal brain voxels and whole brain voxels. Finally, potential correlations between imaging indices and clinical data were also explored.


Results

Four APS and two HC subjects were excluded because the largest dynamic translation or rotation had exceeded 2 mm / 2°. Compared with healthy controls (HCs), APS subjects exhibited higher ReHo values in the right middle temporal gyrus (MTG) and lower ReHo values in the left middle frontal gyrus (MFG), left superior frontal gyrus (SFG), left postcentral gyrus (PoCG), and left superior frontal gyrus, medial (SFGmed). Considered these areas as seed regions, the APS subjects showed abnormal enhancement in functional brain connections, predominantly in the frontal and temporal lobes.


Conclusions

We concluded that the APS subjects had spatially regional dysfunction and remoted synchronous dysfunction in the frontal and temporal lobes of the brain, and changes in ReHo and FC patterns may reveal the mechanism of brain dysfunctions and may serve as an imaging biomarker for the diagnosis and evaluation of SZ.

Read the full article ›

Posted in: Open Access Journal Articles on 12/07/2018 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice