Contrasts of means are often of interest because they describe the effect size among multiple treatments. High-quality inference of population effect sizes can be achieved through narrow confidence intervals (CIs). Given the close relation between CI width and sample size, we propose two methods to plan the sample size for an ANCOVA or ANOVA study, so that a sufficiently narrow CI for the population (standardized or unstandardized) contrast of interest will be obtained. The standard method plans the sample size so that the expected CI width is sufficiently small. Since CI width is a random variable, the expected width being sufficiently small does not guarantee that the width obtained in a particular study will be sufficiently small. An extended procedure ensures with some specified, high degree of assurance (e.g., 90% of the time) that the CI observed in a particular study will be sufficiently narrow. We also discuss the rationale and usefulness of two different ways to standardize an ANCOVA contrast, and compare three types of standardized contrast in the ANCOVA/ANOVA context. All of the methods we propose have been implemented in the freely available MBESS package in R so that they can be easily applied by researchers.