Abstract
We present an approach to meta-analytic structural equation models that relies on hierarchical modeling of sample covariance matrices under the assumption that the matrices are Wishart. The approach handles the commonplace fixed- and random-effects meta-analytic SEMs, and solves the problem of dependent covariance matrices where more than one covariance matrix is obtained from a single study or study author. The ability of the approach to adequately recover parameters is examined via a simulation study. The approach is implemented in the bayesianmasem R package and a demonstration shows applications of the model.