The digital age has transformed access to all kinds of educational content not only in text-based format but also digital images and other media. As learning technologists and librarians begin to organise these new media into digital collections for educational purposes, older problems associated with cataloguing and classifying non-text media have re-emerged. At the heart of this issue is the problem of describing complex and highly subjective images in a reliable and consistent manner. This paper reports on the findings of research designed to test the suitability of two controlled vocabularies to index and thereby improve the discoverability of images stored in the Learning Exchange, a repository for social work education and research. An online survey asked respondents to “tag”, a series of images and responses were mapped against the two controlled vocabularies. Findings showed that a large proportion of user generated tags could be mapped to the controlled vocabulary terms (or their equivalents). The implications of these findings for indexing and discovering content are discussed in the context of a wider review of the literature on “folksonomies” (or user tagging) versus taxonomies and controlled vocabularies.