• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Brain–body dysconnectivity: deficient autonomic regulation of cortical function in first-episode schizophrenia

Background

An accumulating body of evidence indicates that peripheral physiological rhythms help regulate and organize large-scale brain activity. Given that schizophrenia (SZ) is characterized by marked abnormalities in oscillatory cortical activity as well as changes in autonomic function, the present study aimed to identify mechanisms by which central and autonomic nervous system deficits may be related. We evaluated phase-amplitude coupling (PAC) as a physiological mechanism through which autonomic nervous system (ANS) and central nervous system (CNS) activity are integrated and that may be disrupted in SZ.

Methods

PAC was measured between high-frequency heart rate variability (HF-HRV) as an index of parasympathetic activity and electroencephalography (EEG) oscillations in 36 individuals with first-episode SZ and 38 healthy comparison participants at rest.

Results

HRV-EEG coupling was lower in SZ in the alpha and theta bands, and HRV-EEG coupling uniquely predicted group membership, whereas HRV and EEG power alone did not. HRV-EEG coupling in the alpha band correlated with measures of sustained attention in SZ. Granger causality analyses indicated a stronger heart-to-brain effect than brain-to-heart effect, consistent across groups.

Conclusions

Lower HRV-EEG coupling provides evidence of deficient autonomic regulation of cortical activity in SZ, suggesting that patterns of dysconnectivity observed in brain networks extend to brain–body interactions. Deficient ANS–CNS integration in SZ may foster a breakdown in the spatiotemporal organization of cortical activity, which may contribute to core cognitive impairments in SZ such as dysregulated attention. These findings encourage pursuit of therapies targeting autonomic function for the treatment of SZ.

Read the full article ›

Posted in: Journal Article Abstracts on 04/30/2025 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice