• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Bayesian penalty methods for evaluating measurement invariance in moderated nonlinear factor analysis.

Psychological Methods, Vol 30(3), Jun 2025, 482-512; doi:10.1037/met0000552

Measurement invariance (MI) is one of the main psychometric requirements for analyses that focus on potentially heterogeneous populations. MI allows researchers to compare latent factor scores across persons from different subgroups, whereas if a measure is not invariant across all items and persons then such comparisons may be misleading. If full MI does not hold further testing may identify problematic items showing differential item functioning (DIF). Most methods developed to test DIF focused on simple scenarios often with comparisons across two groups. In practical applications, this is an oversimplification if many grouping variables (e.g., gender, race) or continuous covariates (e.g., age) exist that might influence the measurement properties of items; these variables are often correlated, making traditional tests that consider each variable separately less useful. Here, we propose the application of Bayesian Moderated Nonlinear Factor Analysis to overcome limitations of traditional approaches to detect DIF. We investigate how modern Bayesian shrinkage priors can be used to identify DIF items in situations with many groups and continuous covariates. We compare the performance of lasso-type, spike-and-slab, and global-local shrinkage priors (e.g., horseshoe) to standard normal and small variance priors. Results indicate that spike-and-slab and lasso priors outperform the other priors. Horseshoe priors provide slightly lower power compared to lasso and spike-and-slab priors. Small variance priors result in very low power to detect DIF with sample sizes below 800, and normal priors may produce severely inflated type I error rates. We illustrate the approach with data from the PISA 2018 study. (PsycInfo Database Record (c) 2025 APA, all rights reserved)

Read the full article ›

Posted in: Journal Article Abstracts on 06/02/2025 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice