• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Functional Near‐Infrared Spectroscopy‐Based Computer‐Aided Diagnosis of Major Depressive Disorder Using Convolutional Neural Network with a New Channel Embedding Layer Considering Inter‐Hemispheric Asymmetry in Prefrontal Hemodynamic Responses

Background. Functional near-infrared spectroscopy (fNIRS) is being extensively explored as a potential primary screening tool for major depressive disorder (MDD) because of its portability, cost-effectiveness, and low susceptibility to motion artifacts. However, the fNIRS-based computer-aided diagnosis (CAD) of MDD using deep learning methods has rarely been studied. In this study, we propose a novel deep learning framework based on a convolutional neural network (CNN) for the fNIRS-based CAD of MDD with high accuracy. Materials and Methods. The fNIRS data of participants—48 patients with MDD and 68 healthy controls (HCs)—were obtained while they performed a Stroop task. The hemodynamic responses calculated from the preprocessed fNIRS data were used as inputs to the proposed CNN model with an ensemble CNN architecture, comprising three 1D depth-wise convolutional layers specifically designed to reflect interhemispheric asymmetry in hemodynamic responses between patients with MDD and HCs, which is known to be a distinct characteristic in previous MDD studies. The performance of the proposed model was evaluated using a leave-one-subject-out cross-validation strategy and compared with those of conventional machine learning and CNN models. Results. The proposed model exhibited a high accuracy, sensitivity, and specificity of 84.48%, 83.33%, and 85.29%, respectively. The accuracies of conventional machine learning algorithms—shrinkage linear discriminator analysis, regularized support vector machine, EEGNet, and ShallowConvNet—were 73.28%, 74.14%, 62.93%, and 62.07%, respectively. Conclusions. In conclusion, the proposed deep learning model can differentiate between the patients with MDD and HCs more accurately than the conventional models, demonstrating its applicability in fNIRS-based CAD systems.

Read the full article ›

Posted in: Journal Article Abstracts on 08/16/2024 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice