• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Addressing Non-ignorable Panel Attrition Using External Population Data: Analysis of Demographic Events From Survey Data

Sociological Methods &Research, Ahead of Print.
Empirical analysis of variation in demographic events within the population is facilitated by using longitudinal survey data because of the richness of covariate measures in such data, but there is wave-on-wave dropout. When attrition is related to the event, it precludes consistent estimation of the impacts of covariates on the event and on event probabilities in the absence of additional assumptions. The paper introduces an adjustment procedure based on Bayes Theorem that directly addresses the problem of nonignorable dropout. It uses population information external to the survey sample to convert estimates of event probabilities and marginal effects of covariates on them that are conditional on retention in the longitudinal data to unconditional estimates of these quantities. In many plausible and verifiable circumstances, it produces estimates of the marginal effect of covariates closer to the true unconditional quantities than the conditional estimates obtained from estimation using the survey data alone.

Read the full article ›

Posted in: Journal Article Abstracts on 10/01/2023 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice