• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

information for practice

news, new scholarship & more from around the world


advanced search
  • gary.holden@nyu.edu
  • @ Info4Practice
  • Archive
  • About
  • Help
  • Browse Key Journals
  • RSS Feeds

Development and validation of a cardiovascular disease risk-prediction model using population health surveys: the Cardiovascular Disease Population Risk Tool (CVDPoRT) [Research]

BACKGROUND:

Routinely collected data from large population health surveys linked to chronic disease outcomes create an opportunity to develop more complex risk-prediction algorithms. We developed a predictive algorithm to estimate 5-year risk of incident cardiovascular disease in the community setting.

METHODS:

We derived the Cardiovascular Disease Population Risk Tool (CVDPoRT) using prospectively collected data from Ontario respondents of the Canadian Community Health Surveys, representing 98% of the Ontario population (survey years 2001 to 2007; follow-up from 2001 to 2012) linked to hospital admission and vital statistics databases. Predictors included body mass index, hypertension, diabetes, and multiple behavioural, demographic and general health risk factors. The primary outcome was the first major cardiovascular event resulting in hospital admission or death. Death from a noncardiovascular cause was considered a competing risk.

RESULTS:

We included 104 219 respondents aged 20 to 105 years. There were 3709 cardiovascular events and 818 478 person-years follow-up in the combined derivation and validation cohorts (5-year cumulative incidence function, men: 0.026, 95% confidence interval [CI] 0.025–0.028; women: 0.018, 95% 0.017–0.019). The final CVDPoRT algorithm contained 12 variables, was discriminating (men: C statistic 0.82, 95% CI 0.81–0.83; women: 0.86, 95% CI 0.85–0.87) and was well-calibrated in the overall population (5-year observed cumulative incidence function v. predicted risk, men: 0.28%; women: 0.38%) and in nearly all predefined policy-relevant subgroups (206 of 208 groups).

INTERPRETATION:

The CVDPoRT algorithm can accurately discriminate cardiovascular disease risk for a wide range of health profiles without the aid of clinical measures. Such algorithms hold potential to support precision medicine for individual or population uses. Study registration: ClinicalTrials.gov, no. NCT02267447

Read the full article ›

Posted in: Open Access Journal Articles on 08/19/2018 | Link to this post on IFP |
Share

Primary Sidebar

Categories

Category RSS Feeds

  • Calls & Consultations
  • Clinical Trials
  • Funding
  • Grey Literature
  • Guidelines Plus
  • History
  • Infographics
  • Journal Article Abstracts
  • Meta-analyses - Systematic Reviews
  • Monographs & Edited Collections
  • News
  • Open Access Journal Articles
  • Podcasts
  • Video

© 1993-2025 Dr. Gary Holden. All rights reserved.

gary.holden@nyu.edu
@Info4Practice